

File No.: CQC02001001943

Features

- Dielectric strength 2500V
- 600V blocking voltage
- Photo isolation
- Zero cross or random turn-on
- Printed circuit board mount
- Environmental friendly product (RoHS compliant)

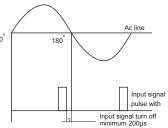
INPUT (Ta = 25° C)

	05D	4VDC to 6VDC		
Control voltage range	12D	9.6VDC to 14.4VDC		
	24D	19.2VDC to 28.8VDC		
Must operate voltage	05D	4VDC		
	12D	9.6VDC		
	24D	19.2VDC		
Must release voltage		1.0VDC		
Max. input current		15mA		
Input Resistance	05D	330Ω		
	12D	1kΩ		
	24D	2kΩ		

OUTPUT (Ta = 25°C)

Load voltage range		75VAC to 280VAC
Load current range		0.1A to 2A
Max. surge current (10ms)		25Apk
Max. I ² t for fusing (10ms, A ² s)		3.1
Max. leakage current		1.5mA
Max. on-state voltage drop		1.5Vr.m.s.
Max. turn-on time	Zero cross turn-on	1/2cycle + 1ms
	Random turn-on	1ms
Max. turn-off time		1/2cycle + 1ms
Max. transient overvoltage		600Vpk
Off-state dv/dt		100V/µs
Max. zero cross overvoltage		±15V
Min. power factor		0.5

GENERAL (Ta = 25°C)


Dielectric strength (input to output)		2500VAC, 50Hz/60Hz,1min
Insulation resistance		1000MΩ (at 500VDC)
Max. capacitance (input to output)		5pF
Vibration resistance		10Hz to 55 HZ 1.5mm DA
Shock resistance		980m/s²
Ambient temperature	Operating	-30°C to 80°C
	Storage	-30°C to 100°C
Ambient humi	dity	45% to 85% RH
Unit weight		Approx. 6g

DESCRIPTION

This SPST-NO printed circuit board mount SIP SSR provides AC output switching in a high density package. The HFS5's DC input is compatible with 5V, 12V and 24V logic systems. The relay provides 2500VAC opto-isolation, between input and output. Encapsulation, thermally conductive epoxy.

PRECAUTIONS

- Soldering must be completed within 10s at 260 °C or less or within 5s at 350 °C or less.
- The SSR case serves to dissipate heat. Install the relays so that they are adequately ventilated. If poor ventilation is unavoidable, the load current must be reduced. Please refer to the curve of Max. Load Current vs. Ambient Temperature.
- 3. The input circuitry does not incorporporate a circuit protecting the SSR from being damaged due to a reversed connection. Make sure that the polarity is correct when connecting the input lines. And make sure that the input and output are correct when connecting.
- 4. When using the HFS5 series for an AC load with a peak voltage of more than 450V, connect an inrush absorber (varistor) to the load terminals of the relay. The recommended varistor voltage ,440V to 470V.
- 5. When using the HFS5 series in phase control applications, at a phase control angle close to 180 degrees the relay's input signal turn off at the trailing edge of the AC sine wave must be limited to end 200µs before AC zero cross as shown in bellow Figure .This assures that the relay has time to switch off. Shorter times may cause loss of control at the following half cycle
- The HFS5 series is not internally connected to a snubber circuit that absorb noise. It is suggested that connecting a snubber circuit to the load terminals of the relay to absorb noise.
- Please do not use the relay beyondthe descriptions in the data sheet. If it is a must to use it beyond descriptions, please contact Hongfa for more technical support.

HONGFA RELAY

ISO9001, ISO/TS16949, ISO14001, OHSAS18001, IECQ QC 080000 CERTIFIED

2010 Rev. 1.00

ORDERING INFORMATION

HFS5

05

D-

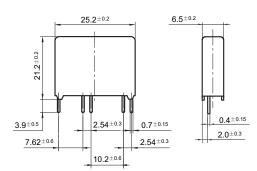
0

Type

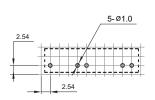
Input voltage 05: 4V to 6V 12: 9.6V to 14.4V 24: 19.2V to 28.8V

Input voltage form D: DC

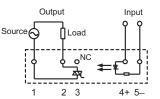
Zero cross function 0: Zero cross turn-on 1: Random turn-on


Termination T: T type

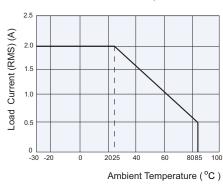
Customer special code


OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT

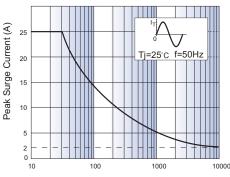
Unit: mm


Outline Dimensions

PCB Layout (Bottom view)



Wiring Diagram



CHARACTERISTIC CURVES

Max. Load Current vs. Ambient Temperature

Max. Permissible Non-repetitive Peak Surge Current vs. Continuance Time

Energizing Continuance Time(ms)

Disclaimer

This datasheet is for the customers' reference. All the specifications are subject to change without notice.

We could not evaluate all the performance and all the parameters for every possible application. Thus the user should be in a right position to choose the suitable product for their own application. If there is any query, please contact Hongfa for the technical service. However, it is the user's responsibility to determine which product should be used only.

© Xiamen Hongfa Electroacoustic Co., Ltd. All rights of Hongfa are reserved.