DESCRIPTION
The L292 is a monolithic LSI circuit in 15-lead Multiwatt® package. It is intended for use, together with L290 and L291, as a complete 3-chip motor positioning system for applications such as carriage/daisy-wheel position control in type-writes. The L290/1/2 system can be directly controlled by a microprocessor.

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_s</td>
<td>Power Supply</td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>V_i</td>
<td>Input Voltage</td>
<td>-15 to +Vs</td>
<td>V</td>
</tr>
<tr>
<td>V_inhibit</td>
<td>Inhibit Voltage</td>
<td>0 to Vs</td>
<td>V</td>
</tr>
<tr>
<td>I_o</td>
<td>Output Current</td>
<td>2.5</td>
<td>A</td>
</tr>
<tr>
<td>P_tot</td>
<td>Total Power Dissipation (T_case = 75 °C)</td>
<td>25</td>
<td>W</td>
</tr>
<tr>
<td>T_stg</td>
<td>Storage and Junction Temperature</td>
<td>-40 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

TRUTH TABLE

<table>
<thead>
<tr>
<th>Vinhibit</th>
<th>Pin 12</th>
<th>Pin 13</th>
<th>Output Stage Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>Disabled</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>H</td>
<td>Normal Operation</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>L</td>
<td>Disabled</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

CONNECTION DIAGRAM (top view)
THERMAL DATA

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rth-j-case</td>
<td>Thermal resistance junction-case</td>
<td>Max</td>
<td>3 °C/W</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS (V_s = 36 V, T_{amb} = 25 °C, f_{osc} = 20 KHz unless otherwise specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>s</sub></td>
<td>Supply Voltage</td>
<td>18</td>
<td>36 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I<sub>d</sub></td>
<td>Quiescent Drain Current</td>
<td>V<sub>s</sub> = 20 V (offset null)</td>
<td>30</td>
<td>50 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>os</sub></td>
<td>Input Offset Voltage (pin 6)</td>
<td>I<sub>o</sub> = 0</td>
<td>±350 mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>rh</sub></td>
<td>Inhibit Low Level (pin 12, 13)</td>
<td>2</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inhibit High Level (pin 12, 13)</td>
<td>3.2</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I<sub>rh</sub></td>
<td>Low Voltage Condition</td>
<td>V<sub>int</sub>(L) = 0.4 V</td>
<td>-100 µA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Voltage Conditions</td>
<td>V<sub>int</sub>(H) = 3.2 V</td>
<td>10 µA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I<sub>i</sub></td>
<td>Input Current (pin 6)</td>
<td>V<sub>i</sub> = +8.8 V</td>
<td>-1.8 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Input Voltage (pin 6)</td>
<td>R<sub>s1</sub> = R<sub>s2</sub> = 0.2Ω</td>
<td>9.1 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I<sub>o</sub> = 2A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I<sub>o</sub> = -2A</td>
<td>-9.1 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I<sub>o</sub></td>
<td>Output Current</td>
<td>V<sub>i</sub> = ±9.8 V R<sub>s1</sub> = R<sub>s2</sub> = 0.2 Ω</td>
<td>±2 A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>D</sub></td>
<td>Total Drop Out Voltage</td>
<td>(including sensing resistors)</td>
<td>I<sub>o</sub> = 2 A</td>
<td>5 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I<sub>o</sub> = 1 A</td>
<td>3.5 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>RS</sub></td>
<td>Sensing Resistor Voltage Drop</td>
<td>T<sub>j</sub> = 150°C</td>
<td>I<sub>o</sub> = 2 A</td>
<td>0.44 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I<sub>d</sub></td>
<td>Transconductance</td>
<td>R<sub>s1</sub> = R<sub>s2</sub> = 0.2Ω</td>
<td>205 mA/V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R<sub>s1</sub> = R<sub>s2</sub> = 0.4Ω</td>
<td>120 mA/V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f<sub>osc</sub></td>
<td>Frequency Range (pin 10)</td>
<td>1</td>
<td>30 KHz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BLOCK DIAGRAM AND TEST CIRCUIT

[Block Diagram and Test Circuit Image]
SYSTEM DESCRIPTION

The L290, L291 and L292 are intended to be used as a 3-chip microprocessor controlled positioning system. The device may be used separately - particularly the L292 motor driver - but since they will usually be used together, a description of a typical L290/1/2 system follows.

At the time, the microprocessor orders a switch to the position mode, (strobe signal at pin 8 of L291) and within 3 to 4 ms the L292 drives the motor to a null position, where it is held by electronic "denti- tening".

The mechanical/electrical interface consists of an optical encoder which generates two sinusoidal signals 90° out of phase (leading according to the motor direction) and proportional in frequency to the speed of rotation. The optical encoder also provides an output at one position on the disk which is used to set the initial position.

The opto encoder signals, FTA and FTB are filtered by the networks R2C2 and R3C3 (referring to Fig.4) and are supplied to the FTA/FTB inputs on the L290.

The main function on the L290 is to implement the following expression:

\[
\text{Output signal (TACHO)} = \frac{dV_{AB}}{dt} \cdot FTA - \frac{dV_{AA}}{dt} \cdot FTB
\]

Thus the mean value of TACHO is proportional to the rotation speed and its polarity indicates the direction of rotation.

The above function is performed by amplifying the input signals in A1 and A2 to obtain VAA and VAB (typ. 7 VP). From VAA and VAB the external differentiator RC networks R5C6 and R4C4 give the signals VMA and VMB which are fed to the multipliers.

Figure 1. System Block Diagram
The second input to each multiplier consists of the sign of the first input of the other multiplier before differentiation, these are obtained using the comparators Cs1 and Cs2. The multiplier outputs, Csa and Csb, are summed by A3 to give the final output signal TACHO. The peak-to-peak ripple signal of the TACHO can be found from the following expression:

\[V_{\text{ripple}} = \frac{\pi}{4} (\sqrt{2} - 1) \cdot V_{\text{thaco\ DC}} \]

The max value of TACHO is:

\[V_{\text{tacho\ max}} = \frac{\pi}{4} \sqrt{2} \cdot V_{\text{thaco\ DC}} \]

Using the comparators C1 and C2 another two signals from Vaa and Vab are derived - the logic signals STA and STB. This signals are used by the microprocessor to determine the position by counting the pulses. The L2910 internal reference voltage is also derived from Vaa and Vab:

\[V_{\text{ref}} = |V_{\text{aa}}| + |V_{\text{ab}}| \]

This reference is used by the D/A converter in the L291 to compensate for variations in input levels, temperature changes and ageing.

The "one pulse per rotation" opto encoder output is connected to pin 12 of the L290 (FTF) where it is squared to give the STF logic output for the microprocessor. The TACHO signal and Vref are sent to the L291 via filter networks R8 C8 R9 and R6 C7 R7 respectively. Pin 12 of this chip is the main summing point of the system where TACHO and the D/A converter output are compared.

The input to D/A converter consists of 5 bit word plus a sign bit supplied by the microprocessor. The sign bit represents the direction of motor rotation. The (anologue) output of the D/A converter - DAC/OUT - is compared with the TACHO signal and the resulting error signal is amplified by the error amplifier, and subsequently appears on pin 1.

The ERRV signal (from pin 1. L291) is fed to pin 6 of the final chip, the L292 H-bridge motor-driver. This input signals is bidirectional so it must be converted to a positive signal because the L292 uses a single supply voltage. This is accomplished by the first stage - the level shifter, which uses an internally generated 8 V reference. This same reference voltage supplies the triangle wave oscillator whose frequency is fixed by the external RC network (R20, C17 - pins 11 and 10) where:

\[1/f_{\text{osc}} = \frac{1}{2RC} \quad (\text{with } R \geq 8.2 \, \text{K}\Omega) \]

The oscillator determines the switching frequency of the output stage and should be in the range 1 to 30 KHz.

Motor current is regulated by an internal loop in the L292 which is performed by the resistors R18, R19 and the differential current sense amplifier, the output of which is filtered by an external RC network and fed back to the error amplifier.

The choice of the external components in these RC network (pins 5, 7, 9) is determined by the motor type and the bandwidth requirements. The values shown in the diagram are for a 5Ω, 5 MH motor. (See L292 Transfer Function Calculation in Application Information).

The error signal obtained by the addition of the input and the current feedback signals (pin 7) is used to pulse width modulate the oscillator signal by means of the comparator. The pulse width modulated signal controls the duty cycle of the Hbridge to give an output current corresponding to the L292 input signal.

The interval between one side of the bridge switching off and the other switching on, \(\tau \), is programmed by \(C_{17} \) in conjunction with an internal resistor \(R_t \).

This can be found from:

\[\tau = R_t \cdot C_{\text{pin\ 10}} \quad (C_{17} \text{ in the diagram}) \]

Since \(R_t \) is approximately 1.5 KΩ and the recommended \(\tau \) to avoid simultaneous conduction is 2.5 \(\mu \)s \(C_{\text{pin\ 10}} \) should be around 1.5 nF.

The current sense resistors R18 and R19 should be high precision types (maximum tolerance \(\pm 2 \% \)) and the recommended value is given by:

\[R_{\text{max}} \cdot I_{\text{o\ max}} \leq 0.44 \, \text{V} \]

It is possible to synchronize two L292’s, if desired, using the network shown in fig. 2.

Finally, two enable inputs are provided on the L292 (pins 12 and 13-active low and high respectively). Thus the output stage may be inhibited by taking pin 12 high or by taking pin 13 low. The output will also be inhibited if the supply voltage falls below 18 V.
The enable inputs were implemented in this way because they are intended to be driven directly by a microprocessor. Currently available microprocessors may generate spikes as high as 1.5 V during power-up. These inputs may be used for a variety of applications such as motor inhibit during reset of the logical system and power-on reset (see fig. 3).

Figure 2.

Figure 3.

Figure 4. Application Circuit.
APPLICATION INFORMATION
This section has been added in order to help the designer for the best choice of the values of external components.

Figure 5. L292 Block Diagram.

The schematic diagram used for the Laplace analysis of the system is shown in fig. 6.

Figure 6.

\[R_{S1} = R_{S2} = R_s \text{ (sensing resistors)} \]
\[\frac{1}{R_4} = 2.5 \times 10^{-3} \Omega \text{ (current sensing amplifier transconductance)} \]

\[L_M = \text{Motor inductance}, R_M = \text{Motor resistance}, I_M = \text{Motor current} \]

\[G_{mo} = \frac{I_M}{s} \bigg|_{s=0} \text{ (DC transfer function from the input of the comparator (V_{TH}) to the motor current (I_M))} \]
Neglecting the VCEsat of the bridge transistors and the VBE of the diodes:

$$G_{mo} = \frac{1}{R_M} \times \frac{2V_S}{V_R}$$

where : $V_S =$ supply voltage

$$V_R = 8 \text{ V (reference voltage)}$$

DC TRANSFER FUNCTION

In order to be sure that the current loop is stable the following condition is imposed:

$$1 + sRC = 1 + s \frac{L_M}{R_M}$$

(pole cancellation) (2)

from which $RC = \frac{L_M}{R_M}$

(Note that in practice R must greater than 5.6 KΩ)

The transfer function is then,

$$\frac{I_M}{V_i} (s) = G_{mo} \frac{1 + sR_F C_F}{G_{mo} R_s + s R_4 C + s^2 R_F C_F R_4 C}$$

(3)

In DC condition, this is reduced to

$$\frac{I_M}{V_i} (0) = \frac{R_2 R_4}{R_1 R_3} \cdot \frac{1}{R_s} = 0.044 \frac{A}{V}$$

(4)

OPEN-LOOP GAIN AND STABILITY CRITERION

For $RC = L_M / R_M$, the open loop gain is:

$$A_β = \frac{1}{sR \text{ subF } C} \times G_{mo} \frac{R_s}{R_4} \frac{R_F}{1 + s R_F C_F} = \frac{G_{mo} R_s}{R_4} C \frac{1}{s} \frac{C}{1 + s R_F C_F}$$

(5)

In order to achieve good stability, the phase margin must be greater than 45° when $|A_β| = 1$.

That means that, at $f_F = \frac{1}{2 \pi R_F C_F}$ must be $|A_β| < 1$ (see fig. 7), that is :

$$|A_β| f = \frac{1}{2 \pi R_F C_F} = \frac{G_{mo} R_s}{R_4 C} \frac{R_F C_F}{\sqrt{2}} < 1$$

(6)

Figure 7. Open Loop Frequency Response
CLOSED-LOOP SYSTEM STEP RESPONSE

a) Small signals analysis.

The transfer function (3) can be written as follows:

\[
\frac{I_M}{V_I}(s) = \frac{0.044}{R_s} \frac{s}{1 + \frac{2\xi \omega_o}{\omega_o^2}} \cdot \frac{1}{1 + \frac{2\xi s + s^2}{\omega_o^2}}
\]

where \(\omega_o = \sqrt{\frac{G_m R_s}{R_d C R_F C_F}}\) is the cutoff frequency

\[\xi = \frac{\sqrt{R_d C}}{4 R_F C_F G_m R_s}\]

is the dumping factor

By choosing the \(\xi\) value, it is possible to determine the system response to an input step signal.

Examples:

1) \(\xi = 1\) from which

\[
I_M(t) = \frac{0.044}{R_s} [1 - e^{-\frac{2R_F C_F}{2R_F C_F} \left(1 + \frac{t}{4 R_F C_F}\right)}] \cdot V_I
\]

(\(V_I\) is the amplitude of the input step).

2) \(\xi = \frac{1}{\sqrt{2}}\) from which

\[
I_M(t) = \frac{0.044}{R_s} \left(1 - \cos \frac{t}{2 R_F C_F} e^{-\frac{t}{2 R_F C_F}}\right) V_I
\]

Figure 8. Small Signal Step Response (normalized amplitude vs. \(t / R_F C_F\)).

\(V_I = 200\, \text{mV/d}iv.
I_M = 100\, \text{mA/d}iv.
\(t = 100\, \mu\text{s/d}iv.
with \(V_I = 1.5\, \text{Vp.}\)
It is possible to verify that the L292 works in "closed-loop" conditions during the entire motor current rise-time: the voltage at pin 7 inverting input of the error amplifier) is locked to the reference voltage VR, present at the non-inverting input of the same amplifier. The previous linear analysis is correct for this example. Descresing the ξ value, the rise-time of the current decreases. But for a good stability, from relationship (6), the maximum value of ξ is:

$$\xi_{\text{min}} = \frac{1}{2 \sqrt{2}}$$

(phasemargin = 45°)

b) Large signal response
The large step signal response is limited by slewrate and inductive load. In this case, during the rise-time of the motor current, The L292 works is open-loop condition.

CLOSED LOOP SYSTEM BANDWIDTH.
A good choice for x is the value $1 / \sqrt{2}$. In this case:

$$\frac{I_M}{V_i}(s) = \frac{0.044}{R_s} \frac{1 + s R_F C_F}{1 + 2s R_F C_F + 2s^2 R_F^2 C_F^2}$$

(8)

The module of the transfer function is:

$$\left| \frac{I_M}{V_i} \right| = \frac{0.044}{R_s} 2 \frac{\sqrt{1 + \omega^2 R_F^2 C_F^2}}{\sqrt{\left(1 + 2\omega R_F C_F \right)^2 + 1} \cdot \left(1 - 2\omega R_F C_F \right)^2 + 1}}$$

(9)

The cutoff frequency is derived by the expression (9) by putting $\left| \frac{I_M}{V_i} \right| = 0.707 \cdot 0.044 / R_s$ (-3 dB), from which:

$$\omega_T = \frac{0.9}{R_F C_F} \quad f_T = \frac{0.9}{2\pi R_F C_F}$$
Example:

a) Data
- Motors characteristics:
 \(L_M = 5 \, \text{mH} \)
 \(R_M = 5 \, \text{W} \)
 \(L_M / R_M = 1 \, \text{msec} \)

- Voltage and current characteristics:
 \(V_s = 20 \, \text{V} \)
 \(I_M = 2 \, \text{A} \)
 \(V_I = 9.1 \, \text{V} \)

- Closed loop bandwidth: 3 kHz

b) Calculation
- From relationship (4):
 \[R_s = \frac{0.044}{I_M} \quad V_I = 0.2 \, \Omega \]
 and from (1):
 \[G_{mo} = \frac{2V_s}{R_M V_R} = 1 \, \Omega^{-1} \]

- \(RC = 1 \, \text{msec} \) [from expression (2)].
- Assuming \(\xi = 1/\sqrt{2} \); from (7) follows:
 \[\xi^2 = \frac{1}{2} = \frac{400 \, \text{C}}{4R_F \, C_F \cdot 0.2} \]
- The cutoff frequency is:
 \[f_T = \frac{143 \times 10^{-3}}{R_F \, C_F} = 3 \, \text{kHz} \]

c) Summarising
- \(RC = 1.10^{-3} \, \text{sec} \)
- \[\frac{1000 \, \text{C}}{R_F \, C_F} = 1 \]
- \(R_F \, C_F = 47 \, \mu\text{s} \)

\[\begin{aligned}
\{ & C = 47 \, \text{nF} \\
\{ & R = 22 \, \text{K\Omega} \\
\{ & \text{For } R_F = 510 \, \Omega \rightarrow C_F = 92 \, \text{nF} \\
\end{aligned} \]
MULTIWATT15 PACKAGE MECHANICAL DATA

<table>
<thead>
<tr>
<th>DIM.</th>
<th>mm</th>
<th>inch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN.</td>
<td>TYP.</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2.65</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>0.039</td>
</tr>
<tr>
<td>E</td>
<td>0.49</td>
<td>0.55</td>
</tr>
<tr>
<td>F</td>
<td>0.66</td>
<td>0.75</td>
</tr>
<tr>
<td>G</td>
<td>1.02</td>
<td>1.27</td>
</tr>
<tr>
<td>G1</td>
<td>17.53</td>
<td>17.78</td>
</tr>
<tr>
<td>H1</td>
<td>19.6</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td></td>
<td>20.2</td>
</tr>
<tr>
<td>L</td>
<td>21.9</td>
<td>22.2</td>
</tr>
<tr>
<td>L1</td>
<td>21.7</td>
<td>22.1</td>
</tr>
<tr>
<td>L2</td>
<td>17.65</td>
<td>18.1</td>
</tr>
<tr>
<td>L3</td>
<td>17.25</td>
<td>17.5</td>
</tr>
<tr>
<td>L4</td>
<td>10.3</td>
<td>10.7</td>
</tr>
<tr>
<td>L7</td>
<td>2.65</td>
<td>2.9</td>
</tr>
<tr>
<td>M</td>
<td>4.25</td>
<td>4.55</td>
</tr>
<tr>
<td>M1</td>
<td>4.63</td>
<td>5.08</td>
</tr>
<tr>
<td>S</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Dia1</td>
<td>3.65</td>
<td>3.85</td>
</tr>
</tbody>
</table>