FEATURES
Single/ Dual Supply Operation +1.6 V to +36 V $\pm 0.8 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
True Single-Supply Operation; Input and Output Voltage Ranges Include Ground
Low Supply Current: $80 \mu \mathrm{~A}$ max
High Output Drive: 5 mA min
Low Offset Voltage: 0.5 mA max
High Open-Loop Gain: $700 \mathrm{~V} / \mathrm{mV}$ min
Outstanding PSRR: $5.6 \mu \mathrm{~V} / \mathrm{V}$ min
Industry Standard Quad Pinouts
Available in Die Form

GENERAL DESCRIPTION

T he OP490 is a high-performance micropower quad op amp that operates from a single supply of +1.6 V to +36 V or from dual supplies of $\pm 0.8 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$. Input voltage range includes the negative rail allowing the OP490 to accommodate input signals down to ground in single-supply operation. The OP490's output swing also includes ground when operating from a single supply, enabling "zero-in, zero-out" operation.
The quad OP490 draws less than $20 \mu \mathrm{~A}$ of quiescent supply current per amplifier, but each amplifier is able to deliver over 5 mA of output current to a load. Input offset voltage is under 0.5 mV with offset drift below $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ over the military temperature range. Gain exceeds over 700,000 and $C M R$ is better than 100 dB . A PSRR of under $5.6 \mu \mathrm{~V} \mathrm{~N}$ minimizes offset voltage changes experienced in battery powered systems.
The quad OP490 combines high performance with the space and cost savings of quad amplifiers. The minimal voltage and current requirements of the OP490 makes it ideal for battery and solar powered applications, such as portable instruments and remote sensors.

REV. B

[^0]PIN CONNECTION
14-Pin Hermetic DIP (Y-Suffix) 14-Pin Plastic DIP (P-Suffix)

16-Pin SOL (S-Suffix)

28-Pin LCC (TC-Suffix)

OP490- SPECIFICATIONS

Parameter	Symbol	Conditions	OP4904/E			OP490F			OP490G			Units
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
InPUT OFFSET VOLTAGE	$\mathrm{V}_{\text {OS }}$			0.2	0.5		0.4	0.75		0.6	1.0	mV
INPUT OFFSET CURRENT	los	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		0.4	3		0.4	5		0.4	5	nA
INPUT BIAS CURRENT	I_{B}	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		4.2	15		4.2	20		4.2	25	nA
LARGE SIGNAL VOLTAGE GAIN	$A_{\text {vo }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \\ & 1 \mathrm{~V}<\mathrm{V}_{0}<4 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 700 \\ & 350 \\ & 125 \\ & \\ & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & 1200 \\ & 600 \\ & 250 \\ & \\ & 400 \\ & 180 \\ & \hline \end{aligned}$		$\begin{aligned} & 500 \\ & 250 \\ & 100 \\ & \\ & 125 \\ & 75 \end{aligned}$	$\begin{aligned} & 1000 \\ & 500 \\ & 200 \\ & \\ & 300 \\ & 140 \end{aligned}$		$\begin{aligned} & 400 \\ & 200 \\ & 100 \\ & \\ & 100 \\ & 70 \end{aligned}$	$\begin{aligned} & 800 \\ & 400 \\ & 200 \\ & \\ & 250 \\ & 140 \end{aligned}$		V/mV
INPUT VOLTAGE RANGE	IVR	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}^{1} \end{aligned}$	$\begin{aligned} & 0 / 4 \\ & -15 / 13 \end{aligned}$			$\begin{aligned} & 0 / 4 \\ & -15 / 13 \end{aligned}$			$\begin{aligned} & 0 / 4 \\ & -15 / 13 \end{aligned}$			V
OUTPUT VOLTAGE SWING	v_{0} V_{OH} V_{OL}	$\begin{gathered} \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{gathered}$	$\begin{aligned} & \pm 13.5 \\ & \pm 10.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \pm 14.2 \\ & \pm 11.5 \\ & 4.2 \\ & 100 \end{aligned}$	500	$\begin{aligned} & \pm 13.5 \\ & \pm 10.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \pm 14.2 \\ & \pm 11.5 \\ & 4.2 \\ & \\ & 100 \end{aligned}$	500	$\begin{aligned} & \pm 13.5 \\ & \pm 10.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \pm 14.2 \\ & \pm 11.5 \\ & 4.2 \\ & 100 \end{aligned}$	500	V V $\mu \mathrm{V}$
COMMON-MODE REJECTION	CMR	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \\ & 0 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \\ & -15 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<13.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 90 \\ & 100 \end{aligned}$	$\begin{aligned} & 110 \\ & 130 \end{aligned}$		$\begin{aligned} & 80 \\ & 90 \end{aligned}$	$\begin{aligned} & 100 \\ & 120 \end{aligned}$		$\begin{aligned} & 80 \\ & 90 \end{aligned}$	$\begin{aligned} & 100 \\ & 120 \end{aligned}$		dB
POWER SUPPLY REJECTION RATIO	PSRR			1.0	5.6		3.2	10		3.2	10	$\mu \mathrm{V} / \mathrm{N}$
SLEW RATE	SR	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	5	12		5	12		5	12		V / ms
SUPPLY CURRENT (ALL AM PLIFIERS)	I_{SY}	$\begin{aligned} & V_{S}= \pm 1.5 \mathrm{~V}, \text { No Load } \\ & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~N} \text { o Load } \end{aligned}$		$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 60 \\ & 80 \\ & \hline \end{aligned}$		$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 60 \\ & 80 \\ & \hline \end{aligned}$			$\begin{aligned} & 60 \\ & 80 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
CAPACITIVE LOAD STABILITY		$\mathrm{A}_{V}=+1$		650			650			650		pF
INPUT NOISE VOLTAGE	$e_{n} p$-p	$\begin{aligned} & \mathrm{f}_{0}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$		3			3			3		$\mu V \mathrm{p}-\mathrm{p}$
INPUT RESISTANCE DIFFERENTIAL MODE	$\mathrm{R}_{\text {IN }}$	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		30			30			30		M Ω
INPUT RESISTANCE COMMON MODE	RInCM	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		20			20			20		G Ω
GAIN BANDWIDTH PRODUCT	GBWP	$A_{V}=+1$		20			20			20		kHz
CHANNEL SEPARATION	CS	$\begin{aligned} & \mathrm{f}_{0}=10 \mathrm{~Hz} \\ & \mathrm{~V}_{0}=20 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}^{2} \end{aligned}$	120	150		120	150		120	150		dB

NOTES

${ }^{1}$ Guaranteed by CM R test.
${ }^{2}$ G uaranteed but not 100% tested.
Specifications subject to change without notice.

ELECTRICAL CHARACTERISTICS (@ $V_{s}= \pm 1.5 \mathrm{~V}$ to $\pm 15 V_{1}-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, uness otherwise noted)

Parameter	Symbol	Conditions	OP490A			Units
InPUT OFFSET VOLTAGE	$\mathrm{V}_{\text {OS }}$			0.4	1.0	mV
AVERAGEINPUT OFFSET VOLTAGE DRIFT	TCV ${ }_{\text {os }}$	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		2	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
INPUT OFFSET CURRENT	Ios	$\mathrm{V}_{C M}=0 \mathrm{~V}$		1.5	5	nA
INPUT BIAS CURRENT	I_{B}	$\mathrm{V}_{C M}=0 \mathrm{~V}$		4.4	20	nA
LARGE-SIGNAL VOLTAGE GAIN	$A_{\text {vo }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{0}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \\ & 1 \mathrm{~V}<\mathrm{V}_{0}<4 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 225 \\ & 125 \\ & 50 \\ & \\ & 100 \\ & 50 \end{aligned}$	$\begin{aligned} & 400 \\ & 240 \\ & 110 \\ & 200 \\ & 110 \end{aligned}$		V/mV
INPUT VOLTAGE RANGE	IVR	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}^{1} \end{aligned}$	$\begin{aligned} & \hline 0 / 3.5 \\ & -15 / 13.5 \end{aligned}$			V
OUTPUT VOLTAGE SWING	V_{0} V_{OH} $V_{0 L}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 10 \\ & 3.9 \end{aligned}$	$\begin{aligned} & \pm 13.7 \\ & \pm 11 \\ & 4.1 \\ & 100 \end{aligned}$	500	V V $\mu \mathrm{V}$
COMMON-MODE REJECTION	CMR	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, 0 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<3.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V},-15 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<13.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 85 \\ & 95 \end{aligned}$	$\begin{aligned} & 105 \\ & 115 \end{aligned}$		dB
POWER SUPPLY REJECTION RATIO	PSRR			3.2	10	$\mu \mathrm{V} / \mathrm{V}$
SUPPLY CURRENT (ALL AM PLIFIERS)	$I_{\text {SY }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}, \mathrm{~N} \text { o Load } \\ & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~N} \circ \mathrm{~L} \text { oad } \end{aligned}$		$\begin{aligned} & 70 \\ & 90 \end{aligned}$	$\begin{aligned} & 100 \\ & 120 \end{aligned}$	$\mu \mathrm{A}$

NOTES
${ }^{1}$ Guaranteed by CM R test.
Specifications subject to change without notice.

OP490- SPECIFICATIONS
ELECTRICAL CHARACTERISTICS ${ }_{\text {OP490G, unless otherwise noted) }}^{\text {@ }} \mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}$ to V , $-25^{\circ} \leq+85^{\circ} \mathrm{C}$ for $0 \mathrm{OP} 490 \mathrm{E} / \mathrm{F},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ for

Parameter	Symbol	Conditions	OP490E			OP490F			OP490G			Units
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
INPUT OFFSET VOLTAGE	$\mathrm{V}_{\text {OS }}$			0.32	0.8		0.6	1.35		0.8	1.5	mV
AVERAGE INPUT OFFSET VOLTAGE DRIVE	TCV ${ }_{\text {os }}$	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		2	5		4			4		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
INPUT OFFSET CURRENT	Ios	$\mathrm{V}_{C M}=0 \mathrm{~V}$		0.8	3		1.0	5		1.3	7	nA
INPUT BIAS CURRENT	I_{B}	$\mathrm{V}_{C M}=0 \mathrm{~V}$		4.4	15		4.4	20		4.4	25	nA
LARGE SIGNAL VOLTAGE GAIN	Avo	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \\ & 1 \mathrm{~V}<\mathrm{V}_{0}<4 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 500 \\ & 250 \\ & 100 \\ & \\ & 150 \\ & 75 \end{aligned}$	$\begin{aligned} & 800 \\ & 400 \\ & 200 \\ & \\ & 280 \\ & 140 \end{aligned}$		$\begin{aligned} & 350 \\ & 175 \\ & 75 \\ & \\ & 100 \\ & 50 \end{aligned}$	$\begin{aligned} & 700 \\ & 250 \\ & 150 \\ & \\ & 220 \\ & 110 \end{aligned}$		$\begin{aligned} & 300 \\ & 150 \\ & 75 \\ & \\ & 80 \\ & 40 \end{aligned}$	$\begin{aligned} & 600 \\ & 250 \\ & 125 \\ & \\ & 160 \\ & 90 \end{aligned}$		V/mV
INPUT VOLTAGE RANGE	IVR	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}^{1} \end{aligned}$	$\begin{aligned} & 0 / 3.5 \\ & -15 / 13 \end{aligned}$			$\begin{aligned} & \hline 0 / 3.5 \\ & -15 / 1= \end{aligned}$			$\begin{aligned} & \hline 0 / 3.5 \\ & -15 / 1= \end{aligned}$			V
OUTPUT VOLTAGE SWING	V_{0} $\mathrm{V}_{\text {OH }}$ $V_{\text {OL }}$	$\begin{gathered} \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \mathrm{~V}=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{gathered}$	$\begin{aligned} & \pm 13 \\ & \pm 10 \\ & \\ & 3.9 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 11 \\ & 4.1 \\ & 100 \end{aligned}$	500	$\begin{aligned} & \pm 13 \\ & \pm 10 \\ & \\ & 3.9 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 11 \\ & 4.1 \\ & 100 \end{aligned}$		$\begin{aligned} & \pm 13 \\ & \pm 10 \\ & \\ & 3.9 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 11 \\ & 4.1 \\ & 100 \end{aligned}$		$\mu \mathrm{V}$
COMMON-MODE REJECTION	CMR	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \\ & 0 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<3.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \\ & -15 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<13.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 90 \\ & 100 \end{aligned}$	$\begin{aligned} & 110 \\ & 120 \end{aligned}$		$\begin{aligned} & 80 \\ & 90 \end{aligned}$	$\begin{aligned} & 100 \\ & 110 \end{aligned}$			$\begin{aligned} & 100 \\ & 110 \end{aligned}$		dB
POWER SUPPLY REJECTION RATIO	PSRR			1.0	5.6		3.2	10		5.6	17.8	$\mu \mathrm{V} / \mathrm{N}$
SUPPLY CURRENT (ALL AM PLIFIERS)	$\mathrm{I}_{5 Y}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}, \mathrm{~N} \circ \text { Load } \\ & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~N} \circ \mathrm{Load} \end{aligned}$		$\begin{aligned} & 65 \\ & 80 \end{aligned}$	$\begin{aligned} & 100 \\ & 120 \end{aligned}$			$\begin{aligned} & 100 \\ & 120 \end{aligned}$			$\begin{aligned} & 100 \\ & 120 \end{aligned}$	$\mu \mathrm{A}$

NOTES

${ }^{1}$ Guaranteed by CM R test.
Specifications subject to change without notice.

SIMPLIFIED SCHEMATIC

Wafer Test Limits (@ $V_{s}= \pm 1.5 \mathrm{~V}$ to $\pm 15, \mathrm{~V}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted)

Parameter	Symbol	Conditions	Limits	Units
Input Offset Voltage	$\mathrm{V}_{\text {OS }}$		0.75	$m V$ max
Input Offset C urrent	los	$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$	5	$n A$ max
Input Bias C urrent	I_{B}	$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$	20	$n A$ max
L arge Signal Voltage Gain	$\mathrm{A}_{\text {vo }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{0}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \end{aligned}$	500	V / mV min
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	250	
		$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & 1 \mathrm{~V}<\mathrm{V}_{0}<4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \end{aligned}$	125	V / mV min
Input Voltage R ange	IVR	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}^{1} \end{aligned}$	$\begin{aligned} & 0 / 4 \\ & -15 / 13.5 \end{aligned}$	V min
Output Voltage Swing	V_{0}	$\begin{gathered} \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{gathered}$	$\begin{aligned} & \pm 13.5 \\ & \pm 10.5 \end{aligned}$	V min
	V_{OH}	$\begin{gathered} \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{gathered}$	4.0	V min
	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	500	$\mu \mathrm{V}$ max
Common-M ode Rejection	CMR	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, 0 \mathrm{~V}<\mathrm{V}_{C M}<4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V},-15 \mathrm{~V}<\mathrm{V}_{C M}<13.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 80 \\ & 90 \end{aligned}$	dB min
Power Supply R ejection R atio	PSRR		10	$\mu \mathrm{V} / \mathrm{V}$ max
Supply Current (All Amplifiers)	$\mathrm{I}_{\text {SY }}$	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~N} 0 \mathrm{~L}$ oad	80	$\mu \mathrm{A} \max$

NOTES

${ }^{1}$ Guaranteed by CM R test.
Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.

ABSOLUTE MAXIMUM RATINGS ${ }^{\mathbf{1}}$

Package Type	$\boldsymbol{\theta}_{\mathbf{J A}}{ }^{\mathbf{2}}$	$\boldsymbol{\theta}_{\mathbf{J c}}$	Units
14-Pin H ermetic DIP (Y)	99	12	${ }^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin Plastic DIP (P)	76	33	${ }^{\circ} \mathrm{C} / \mathrm{W}$
28-Contact LCC (TC)	78	30	${ }^{\circ} \mathrm{C} / \mathrm{W}$
16-Pin SOL (S)	92	27	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES

${ }^{1}$ Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.
${ }^{2} \theta_{\mathrm{JA}}$ is specified for worst case mounting conditions, i.e., θ_{JA} is specified for device in socket for C erdip, P-DIP, and LCC packages; $\theta_{j A}$ is specified for devicesoldered to printed circuit board for SOL package.

ORDERING GUIDE ${ }^{\mathbf{1}}$

Model	$\mathbf{T}_{\mathbf{A}}=+\mathbf{2 5} \mathbf{C}$ $\mathbf{V}_{\mathbf{O S}} \mathbf{m a x}$ $\mathbf{(m V)}$	Operating Temperature Range	Package Description
OP490AY ${ }^{2}$	0.5	MIL	14-Pin Cerdip
OP490AT C/883	0.5	MIL	28-Contact LCC
OP490EY	0.5	IND	14--in Cerdip
OP490FY	0.75	IN D	14-Pin Cerdip
OP490GP	1.0	XIND	14-Pin Plastic DIP
OP490GS ${ }^{3}$	1.0	XIND	16-Pin SOL

NOTES
${ }^{1}$ Burn-in is available on commercial and industrial temperature range parts in cerdip, plastic DIP and TO-can packages.
${ }^{2}$ F or devices processed in total compliance to M IL-ST D-883, add /883 after part number. C onsult factory for 883 data sheet.
${ }^{3}$ F or availability and burn-in information on SO and PLCC packages, contact your local sales office.

DICE CHARACTERISTICS

Die Size 0.139×0.121 inch, 16,819 sq. mils ($3.53 \times 3.07 \mathrm{~mm}, 10.84$ sq. mm)

OP490- Typical Performance Characteristics

Input Offset Voltage
vs. Temperature

Total Supply Current vs. Temperature

Closed-Loop Gain vs. Frequency

Input Offset Current
vs. Temperature

Open-Loop Gain vs. Single-Supply Voltage

Output Voltage Swing vs. Load Resistance

Input Bias Current
vs. Temperature

Open-Loop Gain and
Phase Shift vs. Frequency

Output Voltage Swing
vs. Load Resistance

OP490

Channel Separation Test Circuit

APPLICATIONS INFORMATION

BATTERY-POWERED APPLICATIONS

The OP490 can be operated on a minimum supply voltage of +1.6 V , or with dual supplies of $\pm 0.8 \mathrm{~V}$, and draws only $60 \mu \mathrm{~A}$ of supply current. In many battery-powered circuits, the OP490 can be continuously operated for hundreds of hours before requiring battery replacement, reducing equipment downtime and operating costs.
High performance portable equipment and instruments frequently use lithium cells because of their long shelf-life, light weight, and high energy density relative to older primary cells. M ost lithium cells have a nominal output voltage of 3 V and are noted for a flat discharge characteristic. T he low supply current

Figure 1. Lithium-Sulphur Dioxide Cell Discharge Characteristic with OP490 and $100 \mathrm{k} \Omega$ Loads
requirement of the OP490, combined with the flat discharge characteristic of the lithium cell, indicates that the OP490 can be operated over the entire useful life of the cell. Figure 1 shows the typical discharge characteristic of a 1 Ah lithium cell powering an OP490 with each amplifier, in turn, driving full output swing into a $100 \mathrm{k} \Omega$ load.

SINGLE-SUPPLY OUTPUT VOLTAGE RANGE

In single-supply operation the OP490's input and output ranges include ground. This allows true "zero-in, zero-out" operation. The output stage provides an active pull-down to around 0.8 V above ground. Below this level, a load resistance of up to $1 \mathrm{M} \Omega$ to ground is required to pull the output down to zero.
In the region from ground to 0.8 V the OP 490 has voltage gain equal to the data sheet specification. O utput current source capability is maintained over the entire voltage range including ground.

INPUT VOLTAGE PROTECTION

The OP490 uses a PN P input stage with protection resistors in series with the inverting and noninverting inputs. The high breakdown of the PN P transistors coupled with the protection resistors provides a large amount of input protection, allowing the inputs to be taken 20 V beyond either supply without damaging the amplifier.

MICROPOWER VOLTAGE-CONTROLLED OSCILLATOR An OP490 in combination with an inexpensive quad CM OS switch comprise the precision V_{CO} of Figure 2. This circuit provides triangle and square wave outputs and draws only $75 \mu \mathrm{~A}$ from a 5 V supply. A acts as an integrator; S1 switches the charging current symmetrically to yield positive and negative ramps. The integrator is bounded by B which acts as a Schmitt trigger with a precise hysteresis of 1.67 volts, set by resistors R5,

R6, and R7, and associated CM OS switches. The resulting output of A is a triangle wave with upper and lower levels of 3.33 and 1.67 volts. The output of B is a square wave with almost rail-to-rail swing. With the components shown, frequency of operation is given by the equation:

$$
\mathrm{f}_{\text {OUT }}=\mathrm{V}_{\text {CONTROL }}(\mathrm{V} \text { olts }) \times 10 \mathrm{~Hz} / \mathrm{N}
$$

but this is easily changed by varying C1. The circuit operates well up to a few hundred hertz.

Figure 2. Micropower Voltage Controlled Oscillator

MICROPOWER SINGLE-SUPPLY QUAD VOLTAGE-OUTPUT 8-BIT DAC

The circuit of Figure 3 uses the D AC 8408 C M OS quad 8-bit DAC, and the OP490 to form a single-supply quad voltage-output DAC with a supply drain of only $140 \mu \mathrm{~A}$. The D AC 8408 is
used in voltage switching mode and each DAC has an output resistance ($\approx 10 \mathrm{k} \Omega$) independent of the digital input code. The output amplifiers act as buffers to avoid loading the DAC s. The $100 \mathrm{k} \Omega$ resistors ensure that the OP490 outputs will swing below 0.8 V when required.

Figure 3. Micropower Single-Supply Quad Voltage Output 8-Bit DAC

Figure 4. High Output Amplifier

HIGH OUTPUT AMPLIFIER

The amplifier shown in Figure 4 is capable of driving 25 V p-p into a $1 \mathrm{k} \Omega$ load. Design of the amplifier is based on a bridge configuration. A amplifies the input signal and drives the load with the help of B. Amplifier C is a unity-gain inverter which drives the load with help from D. Gain of the high output amplifier with the component values shown is 10, but can easily be changed by varying R1 or R2.

SINGLE-SUPPLY MICROPOWER QUAD
 PROGRAMMABLE GAIN AMPLIFIER

The combination of quad OP490 and the DAC 8408 quad 8-bit CM OS DAC, creates a quad programmable-gain amplifier with a quiescent supply drain of only $140 \mu \mathrm{~A}$. The digital code
present at the DAC, which is easily set by a microprocessor, determines the ratio between the fixed DAC feedback resistor and the resistance of the DAC ladder presents to the op amp feedback loop. Gain of each amplifier is:

$$
\frac{V_{\text {OUT }}}{V_{\text {IN }}}=-\frac{256}{n}
$$

where n equals the decimal equivalent of the 8 -bit digital code present at the DAC. If the digital code present at the DAC consists of all zeros, the feedback loop will be open causing the op amp output to saturate. The $10 \mathrm{M} \Omega$ resistors placed in parallel with the DAC feedback loop eliminates this problem with a very small reduction in gain accuracy. The 2.5 V reference biases the amplifiers to the center of the linear region providing maximum output swing.

Figure 5. Single Supply Micropower Quad Programmable Gain Amplifier

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

