
High Conductance Ultra Fast Diode
Sourced from Process 1P. See MMBD1201-1205 for characteristics.
Absolute Maximum Ratings* TA $25^{\circ} \mathrm{C}$ unless ontemisen oled

Symbol	Parameter	Value	Units
W ${ }_{\text {IV }}$	Working Inverse Voltage	75	V
I_{0}	Average Rectified Current	200	mA
I_{F}	DC Forward Current	600	mA
i_{f}	Recurrent Peak Forward Current	700	mA
$\mathrm{if}_{\text {(surge) }}$	Peak Forward Surge Current Pulse width $=1.0$ second Pulse width = 1.0 microsecond	$\begin{aligned} & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$
TJ	Operating Junction Temperature	150	${ }^{\circ} \mathrm{C}$

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.
NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations
Thermal Characteristics $\mathrm{TA}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Characteristic	Max	Units
		MMBD4148/SE/CC/CA*	
P_{D}	Total Device Dissipation	350	mW
	Derate above $25^{\circ} \mathrm{C}$	2.8	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {өJA }}$	Thermal Resistance, Junction to Ambient	357	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^0]Electrical Characteristics $T \mathrm{~A}=25^{\circ} \mathrm{C}$ unlessonthemisen oted

Symbol	Parameter	Test Conditions	Min	Max	Units
B_{V}	Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	100		V
		$\mathrm{I}_{\mathrm{R}}=5.0 \mu \mathrm{~A}$	75		V
I_{R}	Reverse Current	$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$		nA	
		$\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$		50	$\mu \mathrm{~A}$
		$\mathrm{~V}_{\mathrm{R}}=75 \mathrm{~V}$	50	$\mu \mathrm{~A}$	
$\mathrm{~V}_{\mathrm{F}}$	Forward Voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		1.0	V
C_{0}	Diode Capacitance	$\mathrm{V}_{\mathrm{R}}=0, \mathrm{f}=1.0 \mathrm{MHz}$	4.0	pF	
T_{RR}	Reverse Recovery Time	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{R}}=6.0 \mathrm{~V}$,		4.0	nS

[^0]: *Device mounted on glass epoxy PCB 1.6" X 1.6 " $\times 0.06$ "; mounting pad for the collector lead min. 0.93 in2

